Outreach to Google Data Studio

This page provides you with instructions on how to extract data from Outreach and analyze it in Google Data Studio. (If the mechanics of extracting data from Outreach seem too complex or difficult to maintain, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Outreach?

Outreach is a sales engagement platform designed to improve the effectiveness of marketing, sales development, closing, and success teams by changing the way companies engage with their customers. It provides outreach teams with a measurable series of touchpoints managed from a single interface.

What is Google Data Studio?

Google Data Studio is a simple dashboard and reporting tool. It's free and easy to use, but it lacks the sophisticated features of higher-end reporting software. Many of the connectors it supports are for Google products, but third parties have written partner connectors to a wide variety of data sources. Its drag-and-drop report editor lets users create about 15 types of charts.

Getting data out of Outreach

Outreach provides a REST API that lets developers fetch resources stored in the platform, such as prospects, accounts, tasks, and calls. For example, to get retrieve information about prospects, you would call GET https://api.outreach.io/api/v2/prospects. You can add filter parameters to a URL to limit retrieval to specific values.

Sample Outreach data

Here's an example of the kind of response you might see with a query like the one above.

{
  "data": [{
    "type": "prospect",
    "id": 1,
    "attributes": {
      "firstName": "Sally",
      "lastName": null,
      ...
    },
    "relationships": {
      "account": {
        "data": {
          "type": "account",
          "id": 1
        }
      },
      "mailings": {
        "links": {
          "related": "https://api.outreach.io/api/v2/mailings?filter[prospect][id]=1"
        }
      },
      ...
    }
  },
  ...]
}

Preparing Outreach data

If you don't already have a data structure in which to store the data you retrieve, you'll have to create a schema for your data tables. Then, for each value in the response, you'll need to identify a predefined datatype (INTEGER, DATETIME, etc.) and build a table that can receive them. The Outreach documentation should tell you what fields are provided by each endpoint, along with their corresponding datatypes.

Complicating things is the fact that the records retrieved from the source may not always be "flat" — some of the objects may actually be lists. In these cases you'll likely have to create additional tables to capture the unpredictable cardinality in each record.

Loading data into Google Data Studio

Google Data Studio uses what it calls "connectors" to gain access to data. Data Studio comes bundled with 17 connectors, mostly to pull in data from other Google products. It also supports connectors to MySQL and PostgreSQL databases, and offers 200 connectors to other data sources built and supported by partners.

Using data in Google Data Studio

Google Data Studio provides a graphical canvas onto which users drag and drop datasets. Users can set dimensions and metrics, specify sorting and filtering, and tailor the way reports and charts are displayed.

Keeping Outreach data up to date

At this point you've coded up a script or written a program to get the data you want and successfully moved it into your data warehouse. But how will you load new or updated data? It's not a good idea to replicate all of your data each time you have updated records. That process would be painfully slow and resource-intensive.

The key is to build your script in such a way that it can identify incremental updates to your data. Thankfully, Outreach's API results include fields like createdAt and updatedAt that allow you to identify records that are new since your last update (or since the newest record you've copied). Once you've taken new data into account, you can set your script up as a cron job or continuous loop to keep pulling down new data as it appears.

From Outreach to your data warehouse: An easier solution

As mentioned earlier, the best practice for analyzing Outreach data in Google Data Studio is to store that data inside a data warehousing platform alongside data from your other databases and third-party sources. You can find instructions for doing these extractions for leading warehouses on our sister sites Outreach to Redshift, Outreach to BigQuery, Outreach to Azure Synapse Analytics, Outreach to PostgreSQL, Outreach to Panoply, and Outreach to Snowflake.

Easier yet, however, is using a solution that does all that work for you. Products like Stitch were built to move data automatically, making it easy to integrate Outreach with Google Data Studio. With just a few clicks, Stitch starts extracting your Outreach data, structuring it in a way that's optimized for analysis, and inserting that data into a data warehouse that can be easily accessed and analyzed by Google Data Studio.